Abstract

We report some research findings on the parallel evolutions of microstructural properties and magnetic hysteresis-loop properties; we attempt to elucidate their relationships. The Ni0.3Zn0.7Fe2O4 toroidal samples were prepared via high-energy ball milling and subsequent moulding; the samples with nanometer/submicron sized compacted powder were sintered from 600°C to 1400°C using 100°C increments. An integrated analysis of phase, microstructural and hysteresis data would point to the existence of three distinct shape-differentiated groups of B–H hysteresis loops which belong to samples with weak, moderate and strong magnetism. The observed grain size with respect to the magnetic-hysteresis behaviour varied from 0.19μm to 0.23μm, 0.24μm to 0.43μm and 1.07μm to 4.98μm for weak, moderate and strong ferromagnetic behaviour respectively. The first occurrence of a strikingly erect and well-defined sigmoid-shape was observable only when sufficient single-phase purity and crystallinity and a sufficiently high volume fraction of multi-domain grains (>0.25μm) were attained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.