Abstract

A correlation between the photoluminescence spectra and structural parameters of Eu-doped quantum- well nanostructures InGaN/GaN and GaAs/AlGaAs is established. It is shown that the incorporation of rare-earth ions initiates lattice (as a rule, compressive) strains. The excitation migration in structures of high perfection stimulates transfer of nonequilibrium carriers to the 5D2-5D0 atomic levels of the Eu ion. In less perfect structures, the insertion of a rare-earth ion leads to the formation of isovalent traps in GaN layers capable of effectively capturing nonequilibrium carriers, which increases the intensity of photoluminescence of the structure by one order of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.