Abstract

Advanced control strategies, together with state-estimation methods, are frequently applied to nonlinear and complex systems. It is crucial to understand which of these are the most efficient methods for the best use of these approaches in a chemical process. In the current work, nonlinear model predictive control (NMPC) approaches were developed that considered three numerical methods: single shooting (SS), multiple shooting (MS), and orthogonal collocation (OC). Their performance was compared against the Van de Vusse reactor benchmark while considering set-point changes, unreachable set-point, disturbances, and mismatches. The results showed that the NMPC based on OC presented less computational cost than the other approaches. The extended Kalman filter (EKF), constrained extended Kalman filter (CEKF), and the moving horizon estimator (MHE) were also developed. The estimators’ performance was compared for the same benchmark by considering the computational cost and the mean squared error (MSE) for the estimated variables, thereby verifying the CEKF as the best option. Finally, the performance of the nine combinations of estimators and control approaches was compared to consider the Van de Vusse reactor and the same scenarios, thereby verifying the best performance of the CEKF with the OC. The present work can help with choosing the numerical method and the estimator for controlling chemical processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call