Abstract

Human red blood cells (RBCs) were perfused in a circular micro-tube (inner diameter of 25 μm) to examine the dynamic changes of cell-free marginal region at both physiological (normal) and pathophysiological (hyper) levels of RBC aggregation. The cell-free area (CFA) was measured to provide additional information on the cell-free layer (CFL) width changes in space and time domains. A prominent enhancement in the mean CFL width was found in hyper-aggregating conditions as compared to that in non-aggregating conditions (P < 0.001). The frequent contacts between RBC and the tube wall were observed and the contact frequency was greatly decreased when the aggregation level was increased from none to normal (P < 0.05) and to hyper (P < 0.001) levels. In addition, the enhanced aggregation from none to hyper levels significantly enlarged the CFA (P < 0.01). We concluded that the RBC aggregation at pathophysiological levels could promote not only the CFL width (one-dimensional parameter) but also the spatiotemporal variation of CFA (two-dimensional parameter).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call