Abstract

In digital signal processing (DSP) based coherent optical communication systems, the effect of equalization enhanced phase noise (EEPN) will seriously degrade the transmission performance of high-capacity optical transmission system. In this paper, we have investigated the influence of EEPN on 9-channel 32-Gbaud dual-polarization 64-ary quadrature amplitude modulation (DP-64QAM) Nyquist-spaced superchannel optical field trial by using electronic dispersion compensation (EDC) and multi-channel digital backpropagation (MC-DBP). The deteriorations caused by EEPN on the signal-to-noise-ratio (SNR) and achievable information rates (AIRs) in high-speed optical communication systems have been studied. The system performance versus back-propagated bandwidth under different laser linewidth have also been demonstrated. The SNR penalty due to the distortion of EEPN achieves ~5.11 dB when FF-DBP is implemented, which informs that FF-DBP is more susceptible to EEPN, especially when the LO laser linewidth is larger. The system AIR versus different transmission distance under different EEPN interference using EDC-only and MC-DBP have also been evaluated, which show that there is a trade-off on the selection of lasers and back-propagated bandwidths to achieve a target AIR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call