Abstract

AM80 magnesium alloy was processed with Equal Channel Angular Press (ECAP) for grain refinement. Laser shock peening without coating (LSPwC) were executed on ECAP processed sample at 8 GW cm−2 and further grain refinement were observed at surface. SEM image expose the grain refinement at different stage of processing, and fine grains of sub-micron size were observed at surface level after ECAP + LSPwC. Residual stress were measured using X-ray diffraction, sin2(Ψ) method and compressive residual stress was found after ECAP. LSPwC intensify the compressive residual stress at surface. Increases in magnitude of residual stresses were noticed with 200 and 300% of LSPwC. Increase in surface roughness were noticed from 0.6 to 6.8 μm by increasing the percentage of LSPwC coverage. Fatigue tests were acknowledged the effect of ECAP and ECAP + LSPwC on reliability of grain refinement technique. ECAP sample showed fatigue life of 7539 cycles against as received. Highest fatigue life of 85,268 life cycles was observed with ECAP + LSPwC by 100% of coverage. Further process of LSPwC for 200 and 300%, fatigue life was significantly decreases to 22,987 and 384 cycles respectively. SEM images of fractured surface exhibits effect of ECAP and LSPwC on crack initiation and propagation for failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.