Abstract

Equal Channel Angular Pressing (ECAP) is the most promising material processing technique involving severe plastic deformation, and has been extensively employed and analysed. The aim of this work is to examine the influence of ECAP on the behaviour of Lead alloy. The technique was applied to Lead alloy at room temperature using route C, at channel angles of 450, 600, 750, 900 and 1050. The materials were processed up to five ECAP passes. Hardness test, impact test, and microstructural changes of the processed materials were examined. Results show that extrusion force reduces as the strain level increases and that dynamic recrystallization and structural changes reduce the material hardness for all angles of ECAP. All the angles absorbed their least amount of energy at their 5th pass. Analysis of microstructure images also revealed that increasing the strain level leads to break down and dissolution of Antimony rich precipitate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.