Abstract

Abstract The epoxidized ethylene propylene diene rubber (eEPDM) was successfully prepared by the epoxidation of ethylene propylene diene rubber (EPDM) using t-butyl hydroperoxide as the oxidant in association with molybdenum oxide as the catalyst and characterized by Fourier-transform infrared (FTIR) spectrometer and 1H-nuclear magnetic resonance analyses. Then the poly(butylene terephthalate) (PBT)/eEPDM/polypropylene (PP) blends with different eEPDM contents were prepared using a twin-screw extruder, and the effect of eEPDM on nonisothermal crystallization kinetics of PBT/PP blend was investigated by differential scanning calorimetry. Meanwhile, morphological features of samples were observed using scanning electron microscopy. Also, the mechanical properties of samples were evaluated. Analyses of the crystallization data by various macro-kinetic models like Jeziorny modified Avrami and Liu-Mo model demonstrated that PP as diluents accelerated the crystallization of PBT in PBT/PP. Moreover, the addition of eEPDM into PBT/PP further facilitated the crystallization of PBT in PBT/eEPDM/PP. The eEPDM was an effective crystallization promoter for PBT/PP blend. And the presence of eEPDM promoted the uniform dispersion of PP in PBT matrix. When the content of eEPDM was 5 phr, the PBT/eEPDM/PP exhibited the highest notched impact strength and Young’s modulus among all the specimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.