Abstract

Amphoteric hydrogels contain both ionizable acidic and basic groups attached on the polymer chains, which can change their volume in response to the slight alteration of the surrounding environmental p H. In this paper, a theory of equilibrium swelling of amphoteric p H-sensitive hydrogels which is an extension of the formalism proposed by Marcombe et al. and a new hybrid free-energy density function of amphoteric hydrogels composed of the Edwards-Vilgis slip-link model and the Flory-Huggins solution theory as well as the contributions of mixing the mobile ions with the solvent, and dissociating the acidic and basic groups are presented for the prediction of the influence of environmental solution p H, microstructural parameters and geometric constraints on mechanical behavior. The calculations were modeled on chitosan-genipin gels, and the results were compared to experimental data. Numerical calculations show that the model is able to predict the dependence of swelling on p H and crosslinker qualitatively well and quantitatively close to the experimental data. Each gel shows minimal swelling at low p H but an increase in swelling until a maximum was reached; for most of the p H range, a good fit was achieved except for where the maximum swelling occurs; for experimental data, the maximum swelling appears at about pH = 4 , but for modeled data the maximum swelling appears between pH = 4 and pH = 6 ; each gel swell decreasing with increasing crosslinker concentration was also successfully predicted. The calculated results also show that microstructural parameters and geometric constraints have a significant impact on the mechanical behavior of the amphoteric hydrogels; the gel swells less when the network is more densely entangled and the maximum swelling ratio of the gels under biaxial constraint is only about one-third of the maximum when the gels swell freely. The theory developed here is valuable for the design and optimization of a drug delivery system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.