Abstract

Evidence indicates that the atmospheric and oceanic processes that occur in response to increased greenhouse gases in the broad-scale climate system may already be changing the ecology of infectious diseases. Recent studies have shown that climate also influences the abundance and ecology of pathogens, and the links between pathogens and changing ocean conditions, including human diseases such as cholera. Vibrio cholerae is well recognized as being responsible for significant mortality and economic loss in developing countries, most often centered in tropical areas of the world. Within the marine environment, V. cholerae is found attached to surfaces provided by plants, filamentous green algae, copepods, crustaceans, and insects. The specific environmental changes that amplified plankton and associated bacterial proliferation and govern the location and timing of plankton blooms have been elucidated. Several studies have demonstrated that environmental non-O1 and non-O139 V. cholerae strains and V. cholerae O1 El Tor and O139 are able to form a three-dimensional biofilm on surfaces which provides a microenvironment, facilitating environmental persistence within natural aquatic habitats during interepidemic periods. Revealing the influence of climatic/environmental factors in seasonal patterns is critical to understanding temporal variability of cholera at longer time scales to improve disease forecasting. From an applied perspective, clarifying the mechanisms that link seasonal environmental changes to diseases' dynamics will aid in developing strategies for controlling diseases across a range of human and natural systems.

Highlights

  • Anthropogenic climate change is measurably affecting ecosystems, communities, and populations [1]

  • Human activities may have impacts on ecological balances, potentially leading to new diseases associated with environmental changes such as temperature extremes and violent weather events

  • This study indicated that the climatic changes that have occurred since the mid1970s could already have caused over 150,000 deaths and approximately five million “disabilityadjusted life years” (DALYs) per year through diseases such as diarrhoea, malaria, and malnutrition, mainly in developing countries [5]

Read more

Summary

Introduction

Anthropogenic climate change is measurably affecting ecosystems, communities, and populations [1].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.