Abstract

Blooms of cyanobacteria are frequent in Brazilian water reservoirs used for drinking water. The warning for the presence of potential toxin-producing cyanobacteria is typically based on time-consuming microscopy, rather than specific molecular detection of toxic genes in cyanobacteria. In this study, we developed a quantitative PCR assay for the detection of cyanobacteria producing the neurotoxin saxitoxin (STX). The assay targets the sxtA gene in the sxt gene cluster. Potential and dominant STX-producers in the Itupararanga reservoir were the genera Raphidiopsis, Aphanizomenon and Geitlerinema. Numbers of the sxtA gene varied from 6.76 × 103 to 7.33 × 105 cells mL−1 and correlated positively with SXT concentrations in the water. Concentrations of STX and the sxtA gene also correlated positively with TN:TP ratio and pH, but correlated negatively with inorganic nutrients and turbidity, confirming that regulation of the SXT production was impacted by environmental variables. In contrast, the occurrence of another cyanotoxin, microcystin, did not correlate with any environmental variables. The developed qPCR assay was found to be a rapid and robust approach for the specific quantification of potential STX-producing cyanobacteria and should be considered in future investigations on toxic cyanobacteria to provide an early warning of potential toxin episodes.

Highlights

  • IntroductionCyanobacteria may cause a multitude of water quality concerns

  • To obtain actual numbers of STX-producing cells in the reservoir, we developed a quantitative PCR (qPCR) approach that targets the sxtA gene in the sxt gene cluster

  • The results demonstrated that the qPCR assay was applicable to quantify potentially saxitoxin-producing cyanobacteria in both cultures and environmental samples

Read more

Summary

Introduction

Cyanobacteria may cause a multitude of water quality concerns. Among these concerns is the potential risk of toxin production, since cyanotoxins in drinking water reservoirs and in recreational water pose a serious risk to human health and to ecosystem functioning [1]. The most studied cyanotoxin is the hepatotoxic microcystin (MC), which consists of more than 240 structural variants and is produced by several cyanobacterial genera [2,3], including Dolichospermum (basionym Anabaena) [4], Microcystis and Planktothrix. Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments; WHO: Geneva, Switzerland, 2020. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. The production and release of microcystin related to phytoplankton biodiversity and water salinity in two cyanobacteria blooming lakes.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call