Abstract

AbstractThe genetic diversity and differentiation of four Zostera marina populations along the southern coast of Korea were estimated using random amplified polymorphic DNA (RAPD) markers to determine the effects of natural and anthropogenic stresses and reproductive strategy on within‐population genetic diversity. The mean number of alleles and gene diversities, indicating population genetic diversity, was highest in the Z. marina population that was exposed to repeated environmental disturbances, and lowest in the most undisturbed population. The higher genetic diversity in the disturbed population was associated with a higher contribution of sexual reproduction to population persistence. This suggests that both the level of disturbances and the reproductive strategy for population persistence contributed significantly to population genetic diversity at the study sites. According to the analysis of molecular variance (AMOVA), 76% genetic variation was attributable to differences among individuals within populations. The observed genetic differentiation (FST = 0.241) among Z. marina populations at the study sites appeared to result from reduced meadow size, increased genetic drift, and a high incidence of asexual reproduction. Increased population genetic diversity can enhance resistance and resilience to environmental disturbances; thus, this investigation of seagrass population genetics provides valuable new insights for the conservation, management, and restoration of seagrass habitats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call