Abstract

In this paper, the influence of different external wall insulation materials on the energy consumption of a newly built apartment in Germany is investigated. Three types of insulation materials commonly used in Germany including mineral fiber, polyurethane, and vacuum insulation panel are chosen for the case studies. An energy analysis model is established to clarify the primary energy use for production of the insulation materials and for building space heating. The calculation results show that the energy consumption for insulation material production increases with the insulation thickness, whereas the energy use for space heating decreases with the insulation thickness. Thus, there exists an optimum thickness to get the lowest total energy consumption for each kind of insulation material. The ascending order of the total energy consumption of the three materials is mineral fiber, polyurethane, and vacuum insulation panel. However, the optimum insulation thicknesses for the three insulation materials show a verse order at a certain heat transfer coefficient of the base envelope. The energy payback time (EPT) is proposed to calculate the payback time of the primary energy use for insulation material production. Mineral fiber has the shortest time, followed by polyurethane and vacuum insulation panel. The EPTS is 10, 19 and 21 years, respectively when the heat transfer coefficient of the base envelope is 0.2 W/(m2·K). In addition, the simulated results show that the theoretical value and the simulated value are basically identical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.