Abstract
In recent years, a diode-pumped alkali laser (DPAL) has become one of the most hopeful candidates to achieve the high power performance. A series of models have been established to analyze the DPAL's kinetic process and most of them were based on the algorithms in which only the ideal 3-level system was considered. In this paper, we developed a systematic model by taking into account the influence of excitation of neutral alkali atoms to even-higher levels and their ionization on the physical features of a static DPAL. The procedures of heat transfer and laser kinetics were combined together in our theoretical model. By using such a theme, the continuous temperature and number density distribution have been evaluated in the transverse section of a cesium vapor cell. The calculated results indicate that both energy pooling and ionization play important roles during the lasing process. The conclusions might deepen the understanding of the kinetic mechanism of a DPAL.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.