Abstract
The endothelium exerts a large influence on the underlying vascular smooth muscle, not only by the release of both contracting and relaxing factors but also by its ability to synthesize a large number of molecules that influence vascular smooth muscle growth. In addition to well-characterized growth promoters or growth inhibitors, some endothelium-derived factors, originally described as vasoactive compounds, seem to possess growth-regulatory properties. The vasoconstrictor endothelin-1 elicited a dose-dependent increase of cultured vascular smooth muscle cell DNA synthesis with a maximal effect of 57 +/- 14% over basal levels, whereas vasodilators such as prostacyclin, sodium nitroprusside, and 8-bromoguanosine 3':5'-cyclic monophosphate reduced DNA synthesis by 19 +/- 5%, 22 +/- 2%, and 31 +/- 3%, respectively. Medium conditioned by cultured bovine aortic endothelial cells markedly stimulated both DNA synthesis and proliferation of smooth muscle cells. When medium was conditioned in the presence of the endothelin-converting enzyme inhibitor phosphoramidon, the mitogenic effect was significantly reduced, thus indicating a role for endothelin in the stimulation of smooth muscle cell growth by endothelial cells. However, when both cell types were maintained in a coculture system, a 13 +/- 2% decrease of DNA synthesis was observed in smooth muscle cultures. The addition of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester, the cyclooxygenase inhibitor indomethacin, or both during the coculture period did not revert the antiproliferative effect of endothelial cells in coculture, thereby indicating it is not likely due to these unstable endothelium-derived vasorelaxant molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.