Abstract

Porous graphitic carbon (PGC) emerges as an ideal stationary phase for LC-ESI-MS of complex oligosaccharides. Therefore, we studied the factors influencing detection and elution of charged oligosaccharides from PGC columns coupled to an ESI source. Electrosorption by the carbon surface leads to total retention of very acidic glycans on instruments where voltage is applied to the spray needle. This problem can be eliminated by thorough electrical grounding. A point of general importance is the influence of ionic strength on the elution and peak shape of glycans containing several carboxylic acid groups in the form of sialic acids or uronic acids. Solvent pH had a marginal effect on the ionization efficiency in both ion polarities, but the content of organic solvent strongly influenced signal intensity of acidic glycans in the negative mode. As a consequence, detection in the positive ion mode appears preferable when neutral and charged glycans shall be quantitated in the same sample. While retention of neutral glycans is not affected by pH, sialylated species are retained somewhat stronger at acidic pH resulting in a larger spread of the entire elution range of N-glycans. Remarkably, retention of glycans on PGC increased at higher temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.