Abstract

InGaN–GaN multiple quantum well (MQW) ultraviolet (UV) light-emitting diodes (LEDs) with and without n-AlGaN electron tunneling barriers (ETBs), grown on sapphire substrates by metal organic chemical vapor deposition (MOCVD), are characterized by comparison with device simulation results. Compared with a conventional LED without the ETB, one of the proposed LEDs with the optimized ETB shows an 11% increase in normalized photodiode (PD) currents. We contribute this improvement to the reduced number of hot electron overflowing to the p-side from MQW by low-energy electron tunneling, which is consistent with the simulation results regarding the carrier distributions. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.