Abstract

A three-square well model is employed for the three interactions namely, electron–acoustic phonon, electron–optical phonon, and Coulomb in the calculation of superconducting transition temperature (Tc) for layered structure MgB2. The analytical solutions for the energy gap equation allow us to understand the relative interplay of these interactions. The values of the coupling strength and of the Coulomb interaction parameter indicate that the test material is in the intermediate coupling regime. The superconducting transition temperature of MgB2 is estimated as 41 K for λac ≈ 0.3, λop ≈ 0.1, and μ* ≈ 0.07. We suggest from these results that both the acoustic and optical phonons within the framework of a three-square well scheme consistently explains the effective electron–electron interaction leading to superconductivity in layered structure MgB2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.