Abstract
The recently discovered APt3P (A=Sr,Ca,La) family of superconductors offers a platform to study frequency dependent superconducting phenomena as the electron–phonon coupling varies from weak to strong. Here we perform ab initio Eliashberg theory calculations to investigate two such phenomena, the occurrence of dip-hump structures in the tunneling spectra and the magnetic field induced coexistence of even and odd frequency superconductivity in these compounds. By calculating the superfluid density, we make materials specific predictions for the occurrence of the paramagnetic Meissner effect as a hallmark of odd frequency pairing. Our results provide a link between two seemingly uncorrelated aspects of even and odd frequency superconductivity and provide theoretical guidance for the future experimental identification of bulk odd frequency superconductivity in this materials’ family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.