Abstract

While ion heating by elastic electron–ion collisions may be neglected for a description of the evolution of freely expanding ultracold neutral plasmas, the situation is different in scenarios where the ions are laser-cooled during the system evolution. We show that electron–ion collisions in laser-cooled plasmas influence the ionic temperature, decreasing the degree of correlation obtainable in such systems. However, taking into account the collisions increases the ion temperature much less than what would be estimated based on static plasma clouds neglecting the plasma expansion. The latter leads to both adiabatic cooling of the ions as well as, more importantly, a rapid decrease of the collisional heating rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.