Abstract

Abstract In this work, we systematically investigate the impacts of electron-donor based on Triphenylamine (TPA). The Geometry structure, energy levels, light-harvesting ability and ultraviolet-visible absorption spectra were calculated by using Density Functional Theory (DFT) and Time-Dependent-DFT. The electron injection rate of the TPA-N(CH3)2 based dyes has 0.71 eV for high among the dye sensitizer. The First and Second order Hyperpolarizability of the 11.95 × 10−30 e.s.u and 12195.54 a.u, respectively for TPA-N(CH3)2 based dye. The calculated absorption spectra were showed in the ultra-violet visible region for power conversion region. The study reveals that the electron transfer character of TPA-N(CH3)2 based dyes can be made suitable for applications in Dye-Sensitized Solar Cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call