Abstract

The first-order correct-boundary Coulomb–Born distorted-wave approximation is used to study the double-electron capture by protons from the ground-state helium atoms at intermediate and high impact energies. The differential double capture cross sections are obtained as a function of the projectile scattering angle and the total cross sections as a function of the impact energy. In the considered range of impact energy, our calculation shows that although the results are not so sensitive to the static inter-electronic correlations in the initial channel, the strong final-state correlations have a large effect on the magnitudes of the double capture cross sections. The calculated differential and integral cross sections are compared with their available experimental values. The comparison shows a good agreement between the present calculations and the measurements. The comparison of the integral cross sections shows that the present approach is compatible with other theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call