Abstract

Endochondral ossification is a basic physiological process in limb development and is central to bone repair and linear growth. Factors which regulate endochondral ossification include several biophysical and biochemical agents and are of interest from clinical and biological perspectives. One of these agents, electric stimulation, has been shown to result in enhanced synthesis of extracellular matrix, calcification, and bone formation in a number of experimental systems and is the subject of this review. The effects of electric stimulation have been studied in embryonic limb rudiments, growth plates, and experimental endochondral ossification induced with decalcified bone matrix and, in all these models, endochondral ossification has been enhanced. It is not known definitively whether electric fields stimulate cell differentiation or modulate an increased number of molecules synthesized by committed cell population and this is a fertile area of current study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.