Abstract

The influence of electric field strength and emitter temperature on dehydrogenation and C–C cleavage in field desorption (FD) mass spectrometry of polyethylene (PE) oligomers of average molecular weights ranging from 500 to 2000 is examined. Low mass oligomers yield molecular weight (MW) distributions that are basically in accordance with results from gel-permeation chromatography. For these materials, dehydrogenation can be greatly reduced by reduction of the emitter potential. Furthermore, the influence of emitter potential on MW distributions indicates the occurrence of field-induced C–C cleavages. Reliable MW distributions are more difficult to obtain from higher mass oligomers by FD-MS because of the need for higher field strength and higher emitter temperatures to effect their desorption/ionization. Experiments reveal that the application of FD-MS to PE oligomers is limited not only by field-induced but also by thermally-induced fragmentations. Even then, FD mass spectra contain valuable information on mass range and homogeneity of PE samples up to about m/z 3600.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.