Abstract

We have used the cell dynamic simulations (CDS) method to study the evolution of asymmetric and symmetric diblock copolymers under electric fields. For symmetric diblock copolymers, long-range-ordered lamellar phases form readily under electric fields. For asymmetric diblock copolymers, sphere-to-cylinder phase transitions occur rapidly when strong electric fields are applied, but it takes longer for the system to form hexagonal cylinder structures. The results of these simulations suggest that the sphere phase is stable under weak electric fields, but a threshold electric intensity exists for the sphere-to-cylinder phase transition. In addition, we also studied the kinetic pathways of the transition of the lamellar phase to the hexagonal cylinder phase of the asymmetric diblock copolymers under electric fields. Hexagonal cylinder structures form when the lamellar phase is subjected to a sudden temperature jump. The scattering functions suggest that the hexagonal cylinder structures are very regular and possess very few flaws.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.