Abstract

AbstractDeveloping scaffolds by combining different polymers in order to improve the properties of the bare polymers has become an extensively applied practice. Polycaprolactone (PCL) is a synthetic polyester with outstanding properties for tissue engineering (TE), although it does have certain drawbacks that can be counteracted by combining it with other biopolymers. The biopolymer elastin is an essential functional component of the dermal extracellular matrix. Therefore, the aim of this work was to produce binary systems comprising a combination of PCL (16 wt/vol%) and different concentrations of elastin (2 and 4 wt/vol%) to evaluate how the protein affects the matrix. To this end, the morphological, physicochemical, mechanical and biological properties of the aforementioned scaffolds were further characterized, observing that PCL/elastin is a suitable mixture as it improves the wettability of PCL when combined with elastin (the contact angles were reduced from 102 to ca. 70°). In addition, mixing PCL with a small quantity of elastin (2%) improved the mechanical properties of PCL‐based scaffolds (Young's modulus increased from 36 to 69 MPa and the maximum stress increased from 11 to 34 MPa).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.