Abstract
The paper reports numerical results of analyses of steady-state harmonic vibrations of von Karman non-linear plates made from Zener material with various elastic support conditions. Influences of shear deformation and rotary inertia are taken into account, thus the model is able to predict the behaviour of plates with a moderate thickness. The amplitude equation for the plate is obtained using the time-averaged principle of virtual work for the assumed harmonic form of excitation and plate displacements as well as the harmonic balance method for Zener material and non-linear elastic supports. Plates are discretised using 8-noded rectangular plate finite elements. The discretised amplitude equation is solved for the response curves using a path-following method. Results of two numerical examples are presented and the qualitative and quantitative influence of support elastic properties is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.