Abstract

In this article we report experimental results on the deformation and the critical breakup conditions of a single drop in a medium under simple shear flow. The role played by both drop and matrix elasticities is quantified by using constant viscosity elastic (Boger) fluids. The experiments were conducted using two transparent parallel disks mounted on a R-18 Weissenberg rheogoniometer. The critical shear rate was determined by imposing successive small changes in shear rate from lower to higher values until the drop breakup was observed. The results show remarkable differences in the mode of deformation and breakup for Newtonian and elastic fluid systems. It is also found that the drop resistance to deformation and breakup increases with increasing elasticity ratio. The contribution of the drop and matrix elasticities is quantified by using an empirical relation established between the drop deformation and the capillary number, Ca. The critical breakup conditions, such as a dimensionless breakup time, tb*, and a critical capillary number, Cac, are determined as a function of the drop/matrix elasticity ratio, k′. The values of Cac and tb* are found to increase with increasing k′.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.