Abstract

The edge roughness effects of graphene nanoribbons on their application in resonant tunnelling diodes with different geometrical shapes (S, H and W) were investigated. Sixty samples for each 5%, 10% and 15% edge roughness conditions of these differently shaped graphene nanoribbon resonant tunnelling diodes were randomly generated and studied. Firstly, it was observed that edge roughness in the barrier regions decreases the effective barrier height and thickness, which increases the broadening of the quantized states in the quantum well due to the enhanced penetration of the wave-function tail from the electrodes. Secondly, edge roughness increases the effective width of the quantum well and causes the lowering of the quantized states. Furthermore, the shape effects on carrier transport are modified by edge roughness due to different interfacial scattering. Finally, with the effects mentioned above, edge roughness has a considerable impact on the device performance in terms of varying the peak-current positions and degrading the peak-to-valley current ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call