Abstract
Equal channel angular pressing (ECAP) is an innovative technique that can produce bulk ultrafine-grained (UFG) materials in product forms large enough for structural applications. It is well known that ECAP route, defined by the sequence of orientations of the billets relative to the die during the iterative ECAP passes, significantly affects the microstructural development of the work piece. Studies reported in the literature have so far focused on fcc metals such as Al and Cu. In this work, we have studied the influence of ECAP routes on the microstructures and properties of hcp commercially-pure Ti. Three ECAP routes, conventionally defined as B A, B C and C, were used to process the Ti billets. Surface quality, microstructures, microhardness, tensile properties, anisotropy, and thermal stability were studied. The route B C is shown to be the best route for processing hcp Ti.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.