Abstract

Climate warming is advancing snowmelt timing in the spring at high latitudes. To predict tree growth in subboreal forests under warmer climates based on mechanistic understanding, it is important to assess how advancing snowmelt influences tree growth in the spring via ecophysiological changes in subboreal forests. In this study, we conducted a field manipulation experiment of snowmelt timing and investigated the response of tree growth, leaf functional traits, and bud-burst phenology in the spring for the seedlings of six dominant tree species in subboreal forests. We found that the spring growth of only one species (Kalopanax septemlobus) out of six species responded positively to advancing snowmelt. Among the leaf functional traits (leaf mass per area, leaf nitrogen content, leaf δ13C value, leaf dry matter content, and leaf area) and bud-burst phenology, only the increase in leaf area was linked to the enhanced shoot growth of K. septemlobus. The significant change in K. septemlobus might be associated with its ecological characteristics to prefer regeneration in canopy gaps. These results indicate that advancing snowmelt under warmer winters can be beneficial for tree species that can plastically develop leaf area in Japanese subboreal forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call