Abstract

AbstractLinear low‐density polyethylene (LLDPE) crosslinks under irradiation in the range of up to 250 kGy. Crosslinking leads to better chemical and thermal resistance but causes reduction in mechanical performance. To counter this reduction, compounds of LLDPE with thermoplastic elastomers (TPV) were made. Specimens were irradiated with doses reaching from 99 to 231 kGy. Gel content shows a decrease of around 12% for compounds with 20 wt% of TPV compared to pure LLDPE. It is also found that compounds containing 10 wt% TPV experience a 4% higher gel content than predicted. For higher amounts of TPV elongation at break increases from 689% for pure LLDPE to 769% and tensile strength decreases from 31.9 to 30.5 MPa. Under irradiation, a trend to lower elongations and tensile strengths is observed. Elongation at break decreased around 200% and tensile strength around 5 MPa under irradiation. Thermal analysis of TPV showed that while the melting temperature decreases, its crystallinity first rises for doses up to 165 kGy before decreasing. Infrared spectroscopy was used to identify changes in the chemical structure, where evidence of surface oxidation under irradiation is found for all compounds with LLDPE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call