Abstract

In this paper, we study the influence of Dzyaloshinskii–Moriya (DM) interaction on quantum correlations in two-qubit Werner states and maximally entangled mixed states (MEMS). We consider our system as a closed system of a qubit pair and one auxiliary qubit, which interact with any one of the qubit of the pair through DM interaction. We show that DM interaction, taken along any direction (x or y or z), does not affect two-qubit Werner states. On the other hand, the MEMS are affected by x and z components of DM interaction and remain unaffected by the y component. Further, we find that the state (i.e., probability amplitude) of auxiliary qubit does not affect the quantum correlations in both the states, and only DM interaction strength influences the quantum correlations. So one can avoid the intention to prepare the specific state of auxiliary qubit to manipulate the quantum correlations in both the states. We mention here that avoiding the preparation of state can contribute to cost reduction in quantum information processing. We also observe the phenomenon of entanglement sudden death in the present study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.