Abstract
To improve the overall performance of marine centrifugal pumps (MCPs), their vibration and noise performances were optimized using the hydraulic design of the volute casing parameters considering a constant hydraulic performance at a specific speed of 66.7. Numerical simulations of the full flow field, vibration, and noise were conducted for each of five volute base circle diameters. The impact of dynamic and static disturbances on the flow and vibration and noise characteristics were investigated. These results provide some theoretical and technical support for the design and application of MCPs. The flow pattern inside the volute becomes more uniform as the D3 increases, but the pressure pulsation decreases. The total vibration levels of the inlet flange, outlet flange, and pump base decreased by 8.3%, 7.9%, and 12.3% respectively. The sound pressure of the flow noise at each characteristic frequency showed a different degree of decreasing trend.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.