Abstract

Dust storms are considered natural hazards, which affect day‐to‐day life for a short time from a few hours to a few days. They are common in India especially in the western Rajasthan Province, which is covered by the Thar Desert. In this paper, we present the effects of the dust events on the aerosol parameters retrieved over Kanpur (located in heart of the Indo‐Gangetic basin) from ground‐based Aerosol Robotic Network (AERONET) measurements. The aerosol parameters show strong seasonal variability in this region, with least spectral dependence of aerosol optical depth (AOD) during the premonsoon season, characterized by dust loading. The aerosol optical properties over the Indo‐Gangetic basin are controlled by the diurnal and seasonal cycles of urban pollutants, but the dust storms are so significant that the local cycle is completely overshadowed. A rise in AOD by more than 50% and corresponding decrease in angstrom parameter by 70–90% have been observed after each dust event. The diurnal variations of AOD during the dust events have been found to be controlled by the onset of the dust storms. The changes in the single scattering albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicate that the 27 May 2002 event influences the optical state to be absorbing, whereas for the other four events the aerosols are found to be dominantly scattering in nature. SSA has been found to increase sharply at higher wavelengths (λ > 440 nm) during the dust events, whereas n(λ) and k(λ) increase 2–3 times more at λ = 440 nm compared to those at higher wavelengths. The contrasting change in the spectral variations of the optical properties is due to the difference in the nature of the aerosols loading during the events. Aerosol volume concentration at coarse mode is found to increase three times after the dust events, whereas no significant change has been observed in the volume concentration at fine mode. Concentration of the particulate matters less than 10 μm (PM10) is also found to increase by ∼150 μg m−3 after each dust event except on the 27 May 2002 event, when heavy rainfall after the dust storm washed out the suspended particulate matters from the atmosphere, and the ground level PM10 concentration was not influenced by the advected dust particles on that day. Aerosol index values in successive Total Ozone Mapping Spectrometer (TOMS) images over the region support the characterization of the aerosols in this region in terms of their optical properties, which are being transported over the Indo‐Gangetic basin from the western Thar Desert and the Gulf regions depending upon the size of the particles, shown by the air mass trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.