Abstract

The role of hydrological droughts in shaping meiofauna abundance through alterations in biofilm biomass and composition was investigated. In January 2005, continental Portugal was under a moderate to severe drought resulting from a 40% to 60% decrease in rainfall during the previous 12 months relative to the long-term average (1961–1990). Reservoir capacity was reduced by 30–50% relative to average values and the width of streams was reduced by 20–80% in the Zezere River Basin (central Portugal). Algal biomass and algal class composition of biofilms was assessed through quantification of algal pigments in three reservoir and six river locations. During drought, habitat alterations are expected to be sharp in rivers while, in the absence of water quality deterioration, the habitat characteristics of reservoirs are expected to remain fairly unaffected. Chlorophylls and carotenoid pigments were extracted from biofilm samples and analysed using high performance liquid chromatography (HPLC). In the winter of 2003, during the period of average rainfall, biofilm biomass did not exceed 5 μg chlorophyll a cm−2 at any location. River biofilm biomass was roughly half of that measured in the reservoirs. In the winter of 2005 (drought), biofilm biomass increased by more than 5-fold in river locations and remained low or decreased in the reservoirs. Algal biofilms were either dominated by Bacillariophyceae or by Chlorophyceae regardless of the existence of drought. The relative contribution of Bacillariophyceae to total biofilm biomass was higher during the drought than under average hydrological conditions. The abundance of harpacticoids, cladocerans and ostracods was favoured by the drought only in the reservoirs where an increase in diatom proportion in biofilms was observed. The increase in the abundance of cyclopoid copepods, turbellarians, nematodes and chironomids in rivers during the drought could be explained by algal class composition and biomass of biofilms and environmental variables (organic matter sediment content, phosphorus availability content and sediment granulometry). The hydrological drought appears to regulate meiofauna abundance only in river locations, possibly through the promotion of the growth of biofilms and the availability of organic matter deposited in rivers during the drought.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.