Abstract
Decreasing the levelized cost of energy is a major design objective for wind turbines. Accordingly, the control is generally optimized to achieve a high energy production and a high-power coefficient. In partial load range, speed and torque are controlled via the generator torque but the rotor torque determines the power coefficient of the turbine. High uncertainties for the uncalibrated low-speed shaft torque measurement and varying drivetrain efficiencies which depend on the speed, load and temperature lead to a torque control error that reduces the power coefficient of the wind turbine. In this paper the rotor torque control error and the impact on the power coefficient of wind turbines is quantified. For this purpose, the variation of drivetrain efficiency is analyzed. An efficiency model for the wind turbine drivetrain is build and validated on the test bench. Then, the influence of the drivetrain speed, torque loads, non-torque loads, and temperature on the efficiency is quantified. Finally, the influence of the rotor torque control error on the power coefficient was simulated with an aerodynamic model. The results show that of all examined influences only torque and temperature significantly impacting the efficiency leading to rotor torque control errors that reduce the power coefficient and consequently increase the levelized cost of energy. Improved efficiency measurement on WT test benches or drivetrain efficiency modelling can reduce the rotor torque control error and therefore decrease the LCOE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.