Abstract

Three strains of Chalara elegans from diverse geographical areas that contained multiple (4 or 5) double-stranded RNA fragments were compared with spontaneously derived cultures from these strains that were either partially cured or completely free of dsRNA. In the wild-type strains, presence of the dsRNAs was found to significantly enhance phialospore production and pigmentation of colonies, whereas radial growth and mycelial dry weight accumulation were reduced. The rate and overall percentage of phialospore germination on 1% Noble water agar were also significantly reduced by the presence of the dsRNAs. In two partially cured strains (only one 2.8-kb fragment remaining), pathogenicity to various plant tissues was significantly enhanced when compared with the wild-type strains containing multiple dsRNA. However, survival in field soil was enhanced in one strain and reduced in the other. In the completely cured strain, the loss of multiple dsRNA fragments was associated with enhanced growth, reduced phialospore production, and a complete loss of pathogenicity and capability for survival in soil. These results indicate that the effects of dsRNAs in C. elegans vary with the strain. In general, the presence of multiple dsRNAs in this fungus enhanced sporulation, altered colony morphology, and reduced growth and pathogenicity. However, since the complete loss of dsRNA was found to eliminate pathogenicity and reduce survival, it suggests that some dsRNA fragments in C. elegans may confer an advantage to this soil-borne facultative plant pathogen. Key words: black root rot, soil-borne plant pathogen, Thielaviopsis basicola.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call