Abstract

The diffusiophoresis of a non-spherical polyelectrolyte (PE) is modeled theoretically by considering an ellipsoidal PE of fixed volume and varying aspect ratio, capable of simulating porous entities such as DNAs, proteins, and synthetic polymeric particles. A continuum model comprising coupled Poisson–Nernst–Planck equations and Stokes equations is adopted. Parameters including the physicochemical properties of a PE, the degree of deformation, and the bulk ionic concentration are examined in detail for their influence on the diffusiophoretic behavior of the PE. We show that the effects of double-layer polarization, polarization of the condensed counterions inside a PE, and the chemiosmotic retardation flow inside it yield complicated diffusiophoretic behavior. In particular, the mobility of an elliptic PE can differ both quantitatively and qualitatively from that of a spherical PE. This phenomenon, which has not been reported previously, provides valuable information for both experimental data interpretation and device design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.