Abstract
In world practice, the need for high-strength concrete with an intensive gain of early strength is due to an increase in requirements for characteristics of concrete and the desire to shorten the construction period. Alkali-activated cement, based on soluble sodium silicates (SSS), can demonstrate high strength and rapid gain due to the nano-modifying effect of amorphous silica present in SSS. However, the problem with the effective use of such cement compositions is unsatisfactory short setting times. This work investigates the effect of modifying admixtures on the structure formation of alkali-activated slag cement (AASC), its physical and mechanical properties depending on characteristics of SSS and the basicity of the aluminosilicate component (precursor), which was changed by the ratio of the ordinary Portland cement (OPC) clinker and granulated blast furnace slag (GBFS). A positive synergistic effect was noticed from glycerol and trisodium phosphate, as the components of a complex admixture, to control the setting of AASC. This resulted in extending the initial setting time from 1 to 5 min to the values of 21–72 min. The compressive strength of 21–26.3 MPa by 3 h, 36.5–43.4 MPa by 1 day, and 84.7–117.1 MPa by 28 days was obtained. Proper shrinkage deformations were equal to 0.47–0.6 mm/m. It was shown that with an increase in the basicity of the aluminosilicate component, the properties of AASC increased both in the early and late stages of hardening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.