Abstract
DNA supercoiling is known to modulate the activity of numerous promoters in vitro and in vivo. Moreover, it has been reported to modulate the rate of formation of cisplatin/DNA crosslinks in vitro. In order to address the question of how the topology influences CDDP toxicity in E. coli, three mutants with altered gyrase activity which led to a decrease of about 25% in superhelical density were studied. Mutant strains gyrA 224 and gyrB 225 showed similar sensitivity to CDDP as the parental strain while the gyrB 226 mutant was resistant. This resistance was abolished in uvrA (excision-repair) and recA (recombination and SOS processes) mutant derivatives. Thus supercoiling might play a role as an indirect modulator of CDDP toxicity in bacteria by interfering with repair processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.