Abstract

A 3 X 3 replicated Latin square design was used to evaluate three isonitrogenous supplements designed to supply 250 g crude protein (CP) daily. Measurements included in situ dry matter (DM) and neutral detergent fiber (NDF) fermentation and ruminal dilution rates. Supplements contained beet pulp plus DL-methionine and urea (MET), ammonium sulfate and urea (U) or soybean meal (SBM). Six mature, ruminally cannulated crossbred beef cows were individually fed supplement and a mixture (63% NDF and 6.1% CP) of chopped 75% grass hay and 25% barley straw in ad libitum. Fermentation rate of DM was increased (P less than .05) by 30% with MET in comparison to SBM or U (9.54 vs 7.28% and 7.74%/h for MET, SBM and U, respectively). Even though MET improved fermentation rate by 30%, particle dilution rate was more important in affecting ruminal digestibility than fermentation rate. Two 90-d heifer growth trials were conducted to evaluate similar supplements. Supplements similar to those used in the in situ trial were mixed with roughage to provide a complete diet balanced for .3 kg daily gain. Heifers consumed 112% of the National Research Council CP requirement. Weight gain, intake and feed conversion were similar (P greater than .10) for all treatments. In heifer trial 2, 90% of the National Research Council CP requirement was fed. The heifers supplemented with MET and SBM had faster (P less than .05) weight gains than heifers receiving U. These studies show that feeding DL-methionine with urea, as compared with feeding an isonitrogenous supplement containing SBM, increased the fermentation rate of DM.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.