Abstract

The effect of simultaneous substitutions of Ca at A site and Nb or Ta at B site in pyrochlore-type solid solutions: (Ca(x)Gd(1-x))(2)(Zr(1-x)M(x))(2)O(7) (x = 0.1, 0.2, 0.3, 0.4, 0.5 and M = Nb or Ta) were studied by powder X-ray diffraction (XRD), FT NIR Raman spectroscopic techniques and transmission electron microscopy. The solid solutions were prepared by the conventional high-temperature ceramic route. The XRD results and Rietveld analysis revealed that the defect fluorite structure of Gd(2)Zr(2)O(7) progressively changed to a more ordered pyrochlore phase by simultaneous substitutions at A and B sites. Raman spectroscopy reveals the progressive ordering in the anion sublattice with simultaneous doping. High-resolution images and selected-area electron diffraction patterns obtained from TEM confirms the XRD and Raman spectroscopic results. High-temperature XRD studies show that the lattice expansion coefficient in these pyrochlore oxides is of the order of 10(-6) K(-1). Lattice thermal expansion coefficient increases with increase of disorder in pyrochlore oxides, and hence the variation of thermal expansion coefficient with composition is also a good indicator of disordering in pyrochlore-type oxides. The ionic conducting properties of the samples were characterised by impedance spectroscopy, and it was found that Nb-doped compositions show a considerable change in conductivity near the phase boundary of disordered pyrochlore and defect fluorite phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.