Abstract

High viscous products made with starch are of great scientific interest in the food, pharmaceutical, and cosmetic industries because they can be used to make creams and gels, as well as functional foods and nutritional products. But, obtaining a good quality highly viscous materials represent a technological challenge. In this present study, the effect of high-pressure treatment at 120 psi for different time interval on the mixture of dry-heated alocasia starch in presence of monosaccharide and disaccharide was studied. A flow measurement test on the samples revealed their shear-thinning behavior. With 15 min of high-pressure processing time, the dry-heated starch and saccharide mixtures displayed the highest viscosity. The dynamic viscoelasticity measurement showed that the storage and loss modulus was enhanced significantly after high-pressure treatment, and all pressure-treated samples showed a gel-like structure (G/>G//). In temperature sweep measurement, the rheological profile of storage modulus, loss modulus, and complex viscosity exhibited a two-stage pattern, i.e., first increased, then decreased, and their values were enhanced significantly after pressure treatment. The resultant highly viscous dry-heated starch and saccharide system have various functionalities in diverse food and pharmaceutical products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.