Abstract
The clinical success of osteochondral autografts is heavily reliant on their mechanical stability, as grafts which protrude above or subside below the native cartilage can have a negative effect on the tribological properties of the joint [1]. Furthermore, high insertion forces have previously been shown to reduce chondrocyte viability [2]. Commercial grafting kits may include a dilation tool to increase the diameter of the recipient site prior to insertion. The aim of this study was to evaluate the influence of dilation on the primary stability of autografts.Six human cadaveric femurs were studied. For each femur, four 8.5 × 8mm autografts were harvested from the trochlear groove and implanted into the femoral condyles using a Smith & Nephew Osteochondral grafting kit. Two grafts were implanted into dilated recipient sites (n=12) and two were implanted with no dilation (n=12). Insertion force was measured by partially inserting the graft and applying a load at a rate of 1 mm/min, until the graft was flush with the surrounding cartilage. Push-in force was measured by applying the same load, until the graft had subsided 4mm below congruency. Significance was taken as (p<0.05).Average maximum insertion force of dilated grafts was significantly lower (p<0.001) than their non-dilated equivalent [28.2N & 176.7N respectively]. There was no significant difference between average maximum push-in force between the dilated and non-dilated groups [1062.8N & 1204.2N respectively].This study demonstrated that significantly less force is required to insert dilated autografts, potentially minimising loss of chondrocyte viability. However, once inserted, the force required to displace the grafts below congruency remained similar, indicating a similar degree of graft stability between both groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.