Abstract

Spatial models are an effective tool for determining potential rockfall source, transit and deposit areas. The reliability of the final rockfall modelling results depends on the quality of the input data, which is mostly based on the digital elevation model (DEM). The spatial resolution of the DEM holds key information about the main morphological properties of the surface, which is crucially important when modelling this kind of geomorphological phenomenon. Therefore, this article studies the influence of DEM spatial resolution on the modelling of rockfall source, transit and deposit areas. Modelling was carried out at five different DEM spatial resolutions available for Slovenia (1 m, 5 m, 12.5 m, 25 m and 100 m). Rockfall source areas were identified using a geomorphometric approach based on a high resolution DEM and a geographical information system. Rockfall transit and deposit areas were modelled using the Conefall computer program, which is designed to estimate potential rockfall risk areas. The area of study was the municipality of Vipava (107.4 km2) in Slovenia, EU. A spatial resolution of 1 m was chosen as a reference layer to which all modelling results of the other spatial resolutions were compared. Validation of modelling included rockfall source area comparison with orthorectified aerial images and location collection of silent witnesses (rock deposits) in the field for estimating maximum runout zones. The modelling results indicate that a spatial resolution of 1 m is the most suitable for modelling on a local scale; resolutions of 5, 12.5 and 25 m can be used for modelling on a regional scale (depending on the purpose of the modelling results); and a resolution of 100 m should not be used for rockfall modelling. Major differences between spatial resolutions can be observed when modelling rockfall source areas, i.e. in areas with the most diverse topography, while in deposit areas the observed differences are smaller due to the less rugged surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call