Abstract

Using 6-31G and 6-311G basis sets to which diffuse and polarization functions were added in a stepwise fashion (a total of 16 basis sets), Hartree–Fock (HF), MP2 and B3LYP geometry optimizations were performed on biphenyl. With the MP2 method, diffuse functions raise the dihedral angle φ, for example, from 46.3° for 6-31G to 54.1° for 6-311++G, while polarization functions lower it, for example, from 54.1° for 6-311++G to 42.1° for 6-311++G(2d,2p). For a single set of polarization functions, φ(MP2) lies close to or above φ(HF) (44–47°), but for a double set it is below φ(HF) and is close to B3LYP values (38–42°) which show little basis set dependence. The most reliable value for φ, 42.1° [MP2/6-311++G(2d,2p)], is expected to increase slightly by adding more diffuse functions. The corresponding best calculated energy barrier at 0° (coplanar conformation) is 2.83 kcal/mol, much higher than the experimental estimate (1.4 ± 0.5 kcal/mol). The barrier at 90° is 1.82 kcal/mol, in line with the experimental estimate (1.6 ± 0.5 kcal/mol) and with previous theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call