Abstract

This paper attempted to establish a relationship between the morphology, microstructure and mechanical properties of a laser lap welded joint (WJ) of 780 duplex-phase (DP) steel under different welding parameters. The experimental results showed that the microstructure of the heat-affected zone (HAZ) of all the WJs were tempered martensite and equiaxed ferrite. The microstructure at the fusion zone (FZ) in all the WJs was dominated by lath martensite and ferrite, and the grain size of the FZ was larger than that in the base materials (BMs). The mechanical properties of the welded joints were tested by a universal testing machine, and the changing law of lap tensile resistance with the laser-welding parameters was analyzed. The results show that there was a linear relationship between the width of the weld and the tensile-shear forces of the weld, and the penetration of the weld had no obvious effect on the tensile-shear forces of the weld. A binary linear-regression equation was established to reveal the degree of influence of welding speed and laser power on the mechanical properties of WJs. It was found that the laser power had a greater influence on the mechanical properties of WJs than the welding speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call