Abstract
The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs), before and after chemical surface functionalization on muscle cell response in vitro and in vivo conditions. Prior to biological tests the surface physicochemical properties of the carbon nanotubes (CNTs) deposited on a polymer membrane were investigated. To 'evaluate microstructure and structure of CNTs scanning electron microscopy (SEM) and Fourier transformation infrared spectroscopy (FTIR) were used. During in vitro study CNTs deposited on polymer membrane were contacted directly with myoblast cells, and after 7 days of culture cytotoxicity of samples was analyzed. Moreover, cell morphology in contact with CNTs was observed using SEM and fluorescence microscopy. The cytotoxicity of CNTs modified in a different way was comparable and significantly lower in comparison with pure polymer membrane. Microscopy analysis of cultured myoblasts confirms intense cell proliferation of all investigated samples with CNTs while for two kinds of CNTs myoblasts' differentiation into myotubes was observed. Histochemical reactions for the activity of enzymes such as acid phosphatase, cytochrome C oxidase, and non-specific esterase allowed the analysis of the extent of inflammation, degree of regeneration process of the muscle fibers resulting from the presence of the satellite cells and the neuromuscular junction on muscle fibers in contact with CNTs after implantation of CNTs into gluteal muscle of rat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.