Abstract
To address targeting and bioavailability issues of peptidic drugs like desmopressin, the encapsulation into nanoparticles (NP) has become standard in pharmaceutics. This study investigated the encapsulation of desmopressin into PLGA NP by the use of pharmaceutically common stabilizers as a precursor to future, optional targeting and bioavailability experiments. Polymer dry weights were measured by freeze drying and thermo gravimetric analysis (TGA). Particle sizes (ranging between 105 and 130nm, PDI<0.1) and zeta potentials (−35 to −45mV) were analyzed with Dynamic Light Scattering (DLS) and Laser-Doppler-Anemometry (LDA) respectively. Highest loading efficiencies, quantified by RP-HPLC, were achieved with Pluronic F-68 as stabilizer of the inner aqueous phase (1.16±0.07μg desmopressin/mg PLGA) and were significantly higher than coating approaches and approaches without stabilizer (0.74±0.01μg/mg). Optimized nanoformulations are thus in competition with the concentration of commercial non-nanoparticulate desmopressin products. Stability of desmopressin after the process was evaluated by HPLC peak purity analysis (diode array detector) and by mass spectrometry. Desmopressin was shown to remain intact during the whole process; however, despite these very good results the encapsulation efficiency turned out to be a bottle neck and makes the system a challenge for potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.